A terminating decimal is a decimal number that has a finite number of digits after the decimal point. In other words, it doesn't go on forever. These decimals can be expressed exactly as a fraction where the denominator is a power of 10 (e.g., 10, 100, 1000, etc.).
Here's a breakdown of key aspects:
Definition: A decimal representation of a number that ends after a finite number of digits. See: https://www.wikiwhat.page/kavramlar/Definition%20of%20Terminating%20Decimal
Fractional Representation: A fraction can be written as a terminating decimal if and only if its denominator, when simplified to its lowest terms, has only 2 and/or 5 as its prime factors. Example: 7/20 = 0.35 (20 = 2 x 2 x 5) View: https://www.wikiwhat.page/kavramlar/Fractional%20Representation
Examples: 0.25, 0.5, 1.75, 3.125, 0.625 are all terminating decimals. Check : https://www.wikiwhat.page/kavramlar/Examples%20of%20Terminating%20Decimal
Non-Examples: 1/3 = 0.333..., 1/7 = 0.142857..., and pi = 3.14159... are not terminating decimals; they are either repeating or non-repeating decimals.
Conversion: Terminating decimals can easily be converted back into fractions. For example, 0.75 = 75/100 = 3/4. More information:https://www.wikiwhat.page/kavramlar/Conversion%20to%20Fractions
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page